Dependent and Independent Systems
โ103โ012โ103โโ3r1+2r2โ=r3โDependentSingularโโ110โ110โ12โ1โโr1โr2โ=r3โDependentSingularโโ100โ120โ123โโNoย relationIndependentNonย Singularโโ102โ234โ5โ210โโ2r1โ=r3โDependentSingularโ
Singular: Infinite or No solutions.
Singular: Redundant or Contradictory.
Non Singular: Unique solution / Complete system.
- The det(A)=0 for Singular Systems.
- The det(A)๎ =0 for NON Singular Systems.
The Upper triangular matrix
U=โa11โ00โฎ0โa12โa22โ0โฎ0โa13โa23โa33โโฎ0โโฏโฏโฏโฑโฏโa1nโa2nโa3nโโฎannโโโ
Its determinant is defined as the product of its diagonal elements.
det(U)=โa11โ00โฎ0โa12โa22โ0โฎ0โa13โa23โa33โโฎ0โโฏโฏโฏโฑโฏโa1nโa2nโa3nโโฎannโโโ=a11โโ
a22โโ
a33โโ
โฆโ
annโ=i=1โnโaiiโ
For the lower triangular matrix, the determinant is the same as the upper triangular matrix.
In numpy
A Non Singular (Complete) System
{โx1โ+3x2โ3x1โ+2x2โโ==โ71โโโ
A=[โ13โ32โ],b=[71โ]
Output (Only has one solution):
np.linalg
is a numpy module related to linear algebra and matrix operations.
The matrix A is non-singular because its determinant is not zero.
det(A)=โ1โ
2โ3โ
3=โ2โ9=โ11๎ =0
Output: